Computing gradient using pytorch
Computing gradient is one of the most fundamental operation in deep learning. It is used in back propagation step while we are updating weights of network
Next is a simple example of how pytorch do gradient computaion
$$
y = 3x^2 + 2x + 1
$$
Compute gradient for x=2
import torch
x = torch.tensor([[2.]], requires_grad=True)
y = 3*(x**2) + 2*x +1
y.backward()
x.grad
Output: tensor([[14.]])